1. 首頁
  2. 大牛說
  3. 專業(yè)典藏!鋰電池漿料制備技術及其對電極形貌的影響(4)

專業(yè)典藏!鋰電池漿料制備技術及其對電極形貌的影響(4)

文獻《Conveying Advanced Li‐ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills[J]. Advanced Energy Materials》基于最理想的電池極片微觀結構特征,綜述了目前工業(yè)生產(chǎn)上先進的鋰離子電池電極漿料的制備技術,及其對電極形貌和性能的影響。筆者翻譯本文總共分成4個部分,本文為第四篇。【相關閱讀:鋰電池漿料制備技術及其對電極形貌的影響(1)、鋰電池漿料制備技術及其對電極形貌的影響(2)、鋰電池漿料制備技術及其對電極形貌的影響(3)】

7、含納米碳、石墨和CNT漿料的的特性 

近年來,石墨烯基和碳納米管(CNT)材料實現(xiàn)應用不斷增長。 該類材料常用作導電添加劑、負極活性材料,以及用作鋰-空氣電池的正極基底。這就需要解決含納米碳材料(CCM)的漿料的問題,并開發(fā)合適的分散技術。 

7.1、CNT 

CNT主要用作導電添加劑,導電劑顆粒的長寬比越大,為了維持絕緣基體和導電顆粒組成的復合材料的導電性,所需要的導電添加劑體積分數(shù)越小。因此,CNT和碳納米纖維(CNF)導電劑是非常合適電極組分,因為導電劑體積分數(shù)越小,活物質體積分數(shù)就越大,電極的能量密度就越高。許多研究者受此啟發(fā),致力于在電極配方中采用這些高長寬比導電劑。CNT和/或CNF基的材料被成功地用作導電添加劑,與各種正負極材料(LiFePO4、LiCoO2、LiNi0.7Co0.3O2、CFx、LiMn0.8Fe0.2PO、TiO2、Li2O4、TiO2、SnO 2、Ti4Ti5O12、Si ) 匹配,并且CNT / CNF基導電劑相對于常見的低縱橫比導電劑具有優(yōu)越性。CNT基材料分散的質量強烈地影響電極的導電性,而制備含有高縱橫比納米導電劑漿料面臨挑戰(zhàn),因為這些導電劑容易成束。最常見的NMP / PVDF漿料溶劑有利于CNT分散和解束,但是水性漿料的就需要采取特殊的方法。 

首先,由于強烈的范德華相互作用,CNT的側面容易相互粘合。其次,在流體流動剪切混合過程中,除了顆粒之間的吸引力,單根纖維內部摩擦也會導致CNT團聚。因此,攪拌混合方法對含CNT漿料的最終質量影響巨大。超聲波分散被認為比較好的方法,并且常用于CNT分散。但是,在延長超聲處理時,CNT可能發(fā)生斷裂,因此最佳混合時間和功率需要根據(jù)結果優(yōu)化。另外,采用特殊分散模式也可能有利,例如,高能量和低能量超聲的組合處理。 

CNT成束會降低漿料性能,而CNT的平行取向對導電性有益。因而,漿料混合過程需要將CNT解束過程和解束后的CNT總體平行取向過程相結合。例如,先高能量剪切混合,隨后低能量剪切攪拌組成的混合過程,這種工藝所制備的CNT-環(huán)氧樹脂復合材料比單獨延長高能量混合工藝所制備的復合材料具有更好導電性。含有CNTs的漿料的制備也可以用表面活性劑輔助,特別時水基漿料。盡管對CNT分散方面,表面活性劑的作用差不多。而與常見的碳導電材料分散相比,CNT的分散過程最明顯不同就是需要解束。為此,具有長親水部分的表面活性劑更有利于CNT相互排斥(排斥力作用在更長的距離上并且也更有效)。相反,具有太長疏水部分的表面活性劑就不好,它們會同時與兩個CNT顆粒相互作用,導致CNT相互吸引。許多常見的表面活性劑都有利于CNT解束。總之,CNT分散表面活性劑的選擇需要特別注意。通常,最適合的表面活性劑含有具有相對較短,平坦且剛性的鏈并具有明顯的親水和疏水末端基團。

增加CNT分散性的另一個方法是CNT表面改性,包括不同基團和/或分子與CNT的側面和/或末端共價連接;還原處理,處理CNT帶負電荷(即將其轉化為“納米管”)。這樣的納米管被陽離子包圍,類似于聚合物電解質。 這些方法使CNT / CNF具有高分散性。 但是,CNT改性可能阻礙最終的電極中Li +和電子轉移。

7.2、石墨烯 

石墨烯是二維碳材料,它被用作鋰離子電池負極活性材料,也用作正極的導電添加劑。負極通常僅由石墨烯和粘合劑,或石墨烯,粘合劑和3D納米尺寸碳添加劑制備。與3D碳混合的原因是石墨烯是具有相對較大尺寸的平面問題,在一定程度上阻礙了Li +離子遷移,這種空間效應可以通過引入3D納米尺寸炭黑和1D CNT來解決,作為石墨烯片之間的填充相提供Li +擴散途徑。

另一種石墨烯基負極是石墨烯與其它負極材料混合使用。第一,石墨烯經(jīng)常用作其他活物質/石墨烯復合材料制備的襯底。在這種情況下,活物質和石墨烯之間的緊密結合在漿料制備之前就形成。 第二,石墨烯也可以與普通導電劑的方式一樣使用,即作為漿料導電劑組分。

正極中,大多數(shù)研究集中在漿料制備之前AM /石墨烯復合材料合成過程中排列石墨烯形態(tài)。將石墨烯作為正極導電劑在漿料制備中加入時,可能發(fā)生石墨烯片的重新堆積,對電極性能有損害。與CNT類似,石墨烯也可以通過超聲波分散到常用的NMP / PVDF溶劑中或通過高強度剪切流體力學混合。將石墨烯和/或石墨烯基材料分散在水基漿料中也是一項具有挑戰(zhàn)性的任務,通常使用表面活性劑和/或對石墨烯表面修飾。

8、漿料特性與工業(yè)制備技術的關系

工業(yè)生產(chǎn)上,電極制備是用預先設計厚度的濕漿料涂覆在集流體上,然后干燥,模頭擠壓高速涂布機是首選設備。如圖16所示,所制備的電極應具有均勻的厚度,無涂層缺陷,涂覆過程應該高生產(chǎn)效率率(即涂層速度應該很高)。 為此,鋰離子電池電極漿料(通常為非牛頓液體)的流體力學參數(shù)應滿足在基材箔上獲得均勻且無缺陷涂層的條件。 

圖16.jpg

首先,漿料涂層應該流延平整,最小化濕涂層的厚度波動(這種厚度變化時模頭擠壓涂布無法避免的),并且濕漿料流平應該足夠快以匹配涂布速度,低粘度有利于快速流平。第二,如圖圖13a所示,涂布方法應該是穩(wěn)定的,這就需要毛細管數(shù)位于如圖16a所示Boder line線下方的穩(wěn)定區(qū)域內,即涂布窗口。(毛細管數(shù),Ca =(μV)/σ,是漿料粘度μ,漿料表面張力σ和基材速度V的函數(shù)關系式)。  

涂布生產(chǎn)需要合適的漿料粘度。但是,漿料粘度控制也不應該損害最終的電極性能。對于粘度調節(jié),經(jīng)常采用調節(jié)漿料固含量的方法,電極性能也會受到電極漿料中固含量的影響,固含量太低在干燥過程中AM / CA容易發(fā)生分離。 

調整漿料粘度的另一個方法是使用表面活性劑。但是這種方法也應該小心使用,一方面,表面活性劑存在最佳濃度,很難把握。另一方面,表面活性劑殘留在電極可能損害電極性能。

9、結論、總結與展望

該文概述并討論了AM / CA /粘合劑漿料制備的當前技術及其可能的未來發(fā)展。 列舉了漿料制備技術的眾多實例,這些技術的優(yōu)缺點與最終的鋰離子電池電極性能有關。 本文探討了各種攪拌混合技術的能力和潛力,并強調了電極形態(tài)和性能的差異也取決于前期的漿料性質。攪拌分散過程除了對電極形態(tài)(即AM / CA /粘合劑分布和電極孔隙率)有影響外,一些特別的分散過程還能夠改變電極組分的結構(AM,CA 和粘合劑),改變粘合劑和AM / CA表面的相互作用,特別是球磨和超聲波漿料制備方法。 

電極漿料的制備技術選擇合適,能夠保證漿料的均勻性以及漿料組分的最合適分布。只有這些漿料參數(shù)合適,才能正確地改善電極形態(tài),從而提高電池比容量和循環(huán)壽命。而且漿料制備和電極干燥時間縮減,節(jié)省昂貴的原材料,取代貴且危險材料(溶劑和分散助劑),這些都能降低制造成本。盡管大量文獻詳細研究了混合工藝參數(shù)(混合類型,攪拌能量,分散助劑等)之間的關系,但是,漿料性能和最終電極結構之間的關系并沒有完全弄清楚。 

漿料的要求似乎相當簡單(AM,CA 和粘合劑均勻混合),但是,對于特定的電極漿料(如特定AM,CA和粘合劑的性質),我們需要集中精力選擇最佳攪拌混合過程,而不是在現(xiàn)有報道中查找“最好的漿料制備方法“。通常,系統(tǒng)研究并提供一些通用的良好的攪拌混合技術可能并不會有效(混合過程可能會損傷一些AM和CA材料結構,可能損壞粘合劑,表面活性劑殘留可能會損害性能等)。 

復雜多組分漿料制備工藝的基礎知識也適用于其他技術領域,如復合材料制備或藥物/藥學,這也為眾多領域的新產(chǎn)品設計和制備提供了的機會。

來源:第一電動網(wǎng)

作者:鋰想生活mikoWoo

本文地址:http://www.healthsupplement-reviews.com/kol/56094

返回第一電動網(wǎng)首頁 >

收藏
62
  • 分享到:
發(fā)表評論
新聞推薦
大牛作者

鋰想生活mikoWoo

高級工程師,從事工作鋰離子電池極片機理研究、設計與工藝優(yōu)化。微信公眾號:鋰想生活1(LIB-Life1)。

  • 31
    文章
  • 2022
    獲贊
閱讀更多文章
熱文榜
日排行
周排行
第一電動網(wǎng)官方微信

反饋和建議 在線回復

您的詢價信息
已經(jīng)成功提交我們稍后會聯(lián)系您進行報價!

第一電動網(wǎng)
Hello world!
-->